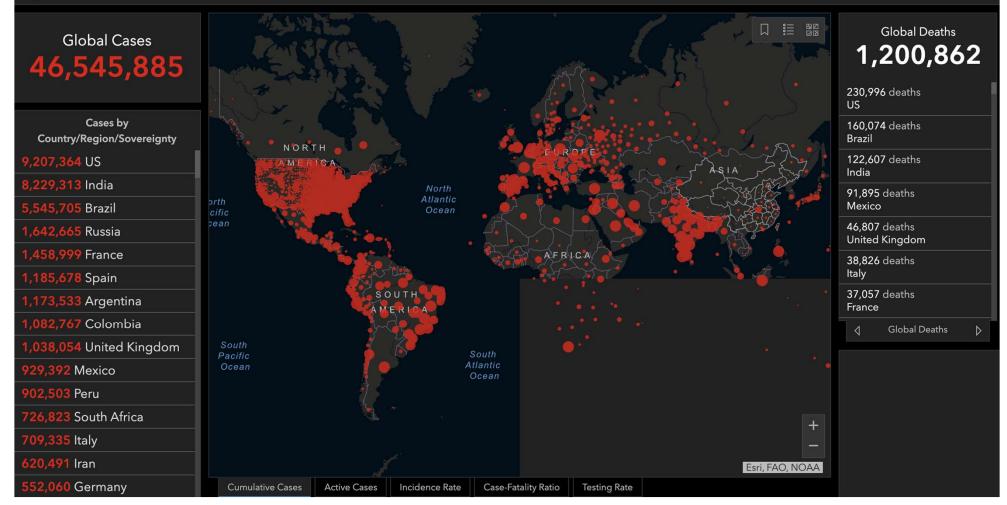
COVID - 19 and healthcare environmental hygiene

Prof. Didier Pittet

Chair, Clean Hospitals

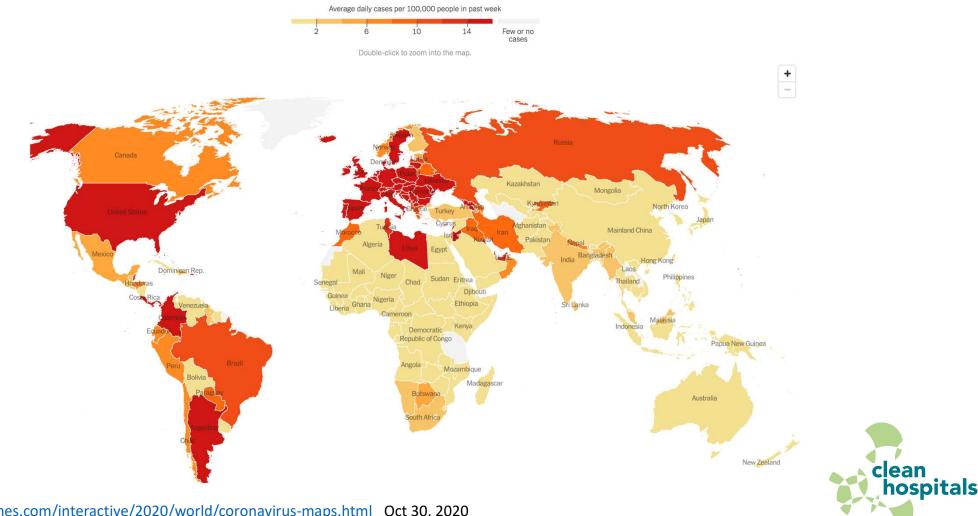
Infection Control Programme and WHO Collaborating Center on Patient Safety, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland



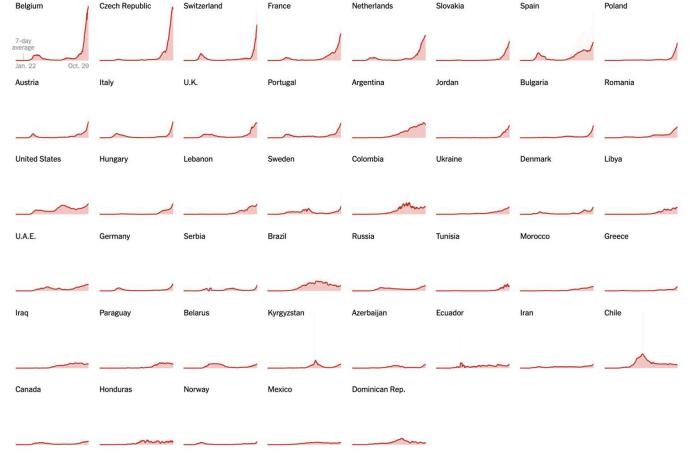
November 4th, 2020

Overview: Cases and Morbidity

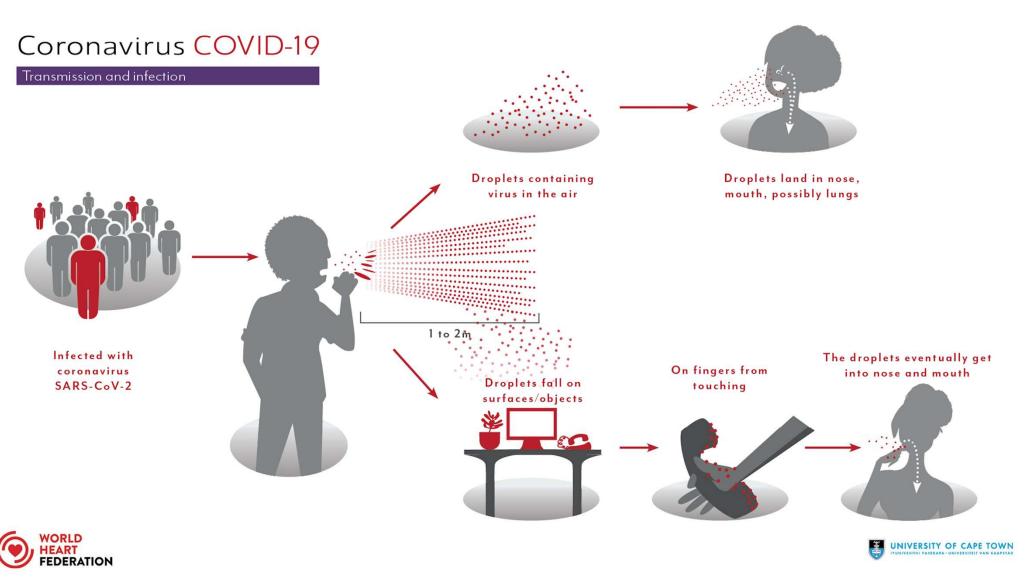
November 2, 2020


🐨 COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6


November 2, 2020

COVID-19 prevalence by country

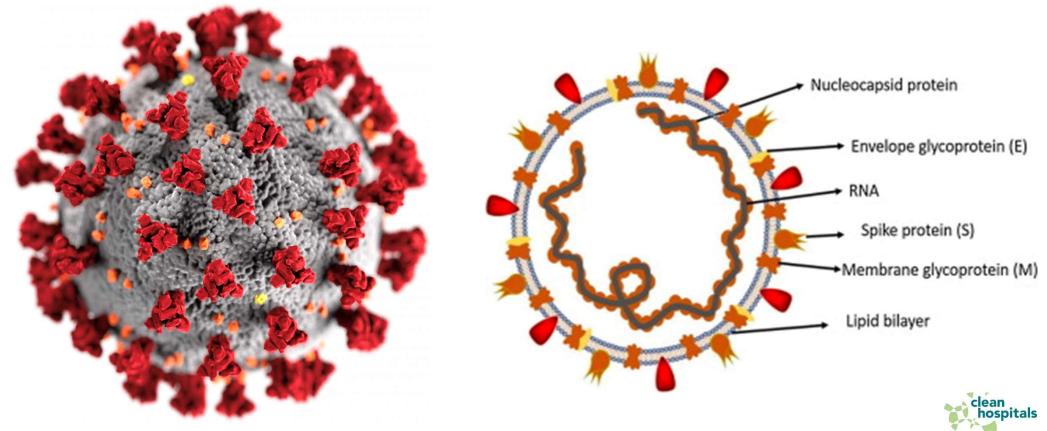

https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html Oct 30, 2020

Countries with the biggest increase in new cases

https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html Oct 30, 2020

https://www.world-heart-federation.org/resources/covid-19-transmission/

Transmission patterns among health workers


Non COVID patients

COVID patients

Assuming availability and adherence to personal protective equipment (PPE), the risk of infection among health workers might depend primarily on <u>community circulation of the virus</u>

Community

The structure of encapsulated viruses: They are quite easy to kill!

https://www.sciencedirect.com/science/article/pii/S2090123220300540#f0005

SARS Cov-2 in the environment: the Literature

Zhou et al.: Looked at contamination of air and surfaces in an acute care setting in London at the peak of the first wave

- Viral RNA was detected on 114/218 (52.3%) of surfaces and 14/31 (38.7%) of air 48 samples
- But no virus was cultured

Songjie et al.: Looked at environmental detection in a COVID hospital in Wuhan

- No air contamination was detected
- Frequent surface contamination (24%-50% depending on surface)

https://www.medrxiv.org/content/10.1101/2020.05.24.20110346v2.full.pdf https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214329/

SARS Cov-2 in the environment (cont.)

Ye et al.: Looked at contamination of surfaces in a hospital in Wuhan

- Frequent surface contamination (15.4%-31.9% depending on surface)
- Contaminated surfaces included COVID-19 patient care areas, hospital objects, and PPE

Doremalen et al.: Looked at environmental survival and air survival

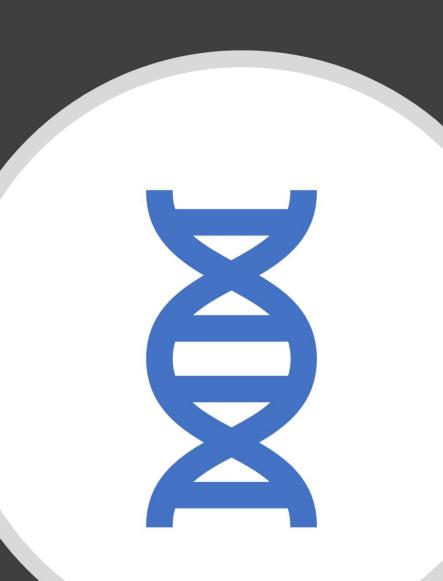
- Tested aerosolization (by machine) in a Goldberg drum, 3hr survival (and then stopped study)
- SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard

https://www.sciencedirect.com/science/article/pii/S0163445320302607?casa_token=bjv-koy6CScAAAAA:OHJdV2UigcEBwJtbKbjeXlTuqzsC3Z2qi-ylAJB7qj0fFfTMMeOLAYskCE-S9ofQ3IcEkeUWUg https://www.nejm.org/doi/full/10.1056/nejmc2004973

SARS Cov-2 in the environment (cont.)

Jiang et al.: Looked at contamination of surfaces and air in a hospital in Changchun, China

- The positive rates of the air and surfaces (150 samples) were 3.57% (1/28) and 0.77% (1/130), respectively
- Used ultraviolet air filtering and 1000-2000 mg/L chlorine-containing disinfectant for ambient air and floor disinfection


Chin et al: Tested the survivability of SARS Cov-2 on a variety of surfaces

• RNA was still recovered after several days on a number of surfaces (no culture)

What does this all mean?

- Viral RNA is often on surfaces, and we know it can stay there for a long time
- It is possible to keep aerosolized SARS Cov-2 suspended in the air for a long time in controlled experimental conditions
- Disinfection procedures drastically lower the viral RNA recovered from the environment
- It is difficult to culture viable viruses from the environment

MANY types of products kill SARS CoV-2:

EPA Tool:

Can browse

products

or

Can search by:

Ingredient

Registration #

Environment

type

Contact time

(ex. healthcare)

List N Tool: COVID-19 Disinfectants

Search EPA's list of products for use against SARS-CoV-2, the virus that causes COVID-19, by selecting one or more of the corresponding criteria above. All products on this list meet EPA's criteria for use against SARS-CoV-2, the virus that causes COVID-19. These products are for use on surfaces, NOT humans. At any point, click the "Show Results" button to view your customized list of results. Select as many, or as few, criteria as you would like. Click the "Clear Results" button to remove all previous selections and start over. Click "Browse All" to display all products.

EPA Home | Privacy and Security Notice | Accessibility

Feedback

https://cfpub.epa.gov/giwiz/disinfectants/index.cfm

The aerosolization debate:

- R_{ρ} for SARS CoV-2 vs. other airborne viruses
- The technical vs. the clinically urgent
- The WHO and the CDC perspectives

Journal List > Elsevier Public Health Emergency Collection > PMC7190524

Elsevier Public Health Emergency Collection

Public Health Emergency COVID-19 Initiative

<u>J Hosp Infect</u>. 2020 Apr 30 doi: <u>10.1016/j.jhin.2020.04.040</u> [Epub ahead of print] PMCID: PMC7190524 PMID: <u>32360356</u>

Putting some context to the aerosolization debate around SARS-CoV-2

A. Peters,^a P. Parneix,^b J. Otter,^c and D. Pittet^{a,*}

Author information > Article notes > Copyright and License information <u>Disclaimer</u>

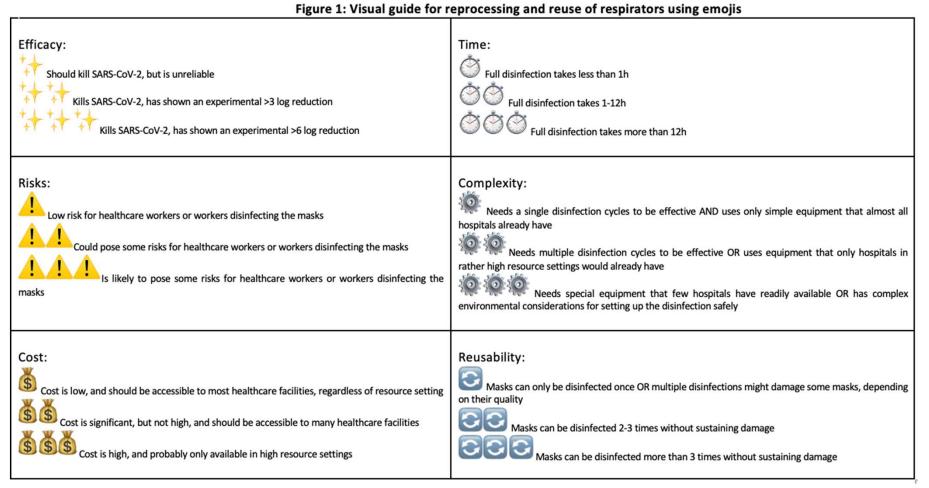
This article has been <u>cited by</u> other articles in PMC.

Sir,

A letter entitled 'Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1' was published recently in the *New England Journal of Medicine* [1]. The experiments reported in this letter compared the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on a number of different

The importance of a clean hospital room: Risk of acquisition from prior room occupants by organism

	Decreased acquisition		Control		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Huang (MRSA)	57	1454	248	8697	16.2%	1.39 [1.04, 1.86]		
Nseir (ESBL producing Gram neg)	8	50	50	461	0.0%	1.57 [0.70, 3.52]		
Huang (VRE)	58	1291	256	9058	16.2%	1.62 [1.21, 2.16]		
Ajao (Klebsiella sp. or Escherichia coli)	32	648	235	8723	14.2%	1.88 [1.29, 2.74]		
Nseir (Pseudomonas)	21	85	61	426	10.4%	1.96 [1.12, 3.45]		
Drees (VRE)	19	138	31	500	9.7%	2.42 [1.32, 4.43]		
Shaughnessy (Clostridium difficile)	10	91	77	1679	8.3%	2.57 [1.28, 5.15]		
Mitchell (MRSA)	74	884	163	5344	16.4%	2.90 [2.18, 3.86]		
Nseir (Acinetobacter)	16	52	41	459	8.6%	4.53 [2.32, 8.86]		
Total (95% CI)		4643		34886	100.0%	2.14 [1.65, 2.77]	•	
Total events	287		1112					
Heterogeneity: Tau ² = 0.09; Chi ² = 21.32, df = 7 (P = 0.003); $I^2 = 67\%$						<u>-</u>	0.1 0.2 0.5 1 2 5 10	
Test for overall effect: $Z = 5.74 (P < 0.00001)$							Decreased acquisition Increased acquisition	
							Desteused dequisition mereused dequisition	

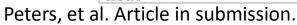

Mitchell, B. G., Dancer, S. J., Anderson, M. & Dehn, E. Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis. *J. Hosp. Infect.* 91, 211–217 (2015).

Reusing disposables and local production

Making it easier for hospitals to decide:

Peters, et al. Article in submission.

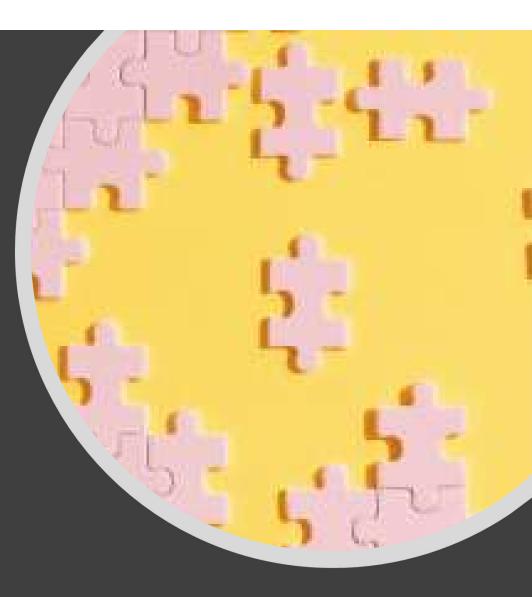
Results of the systematic review :

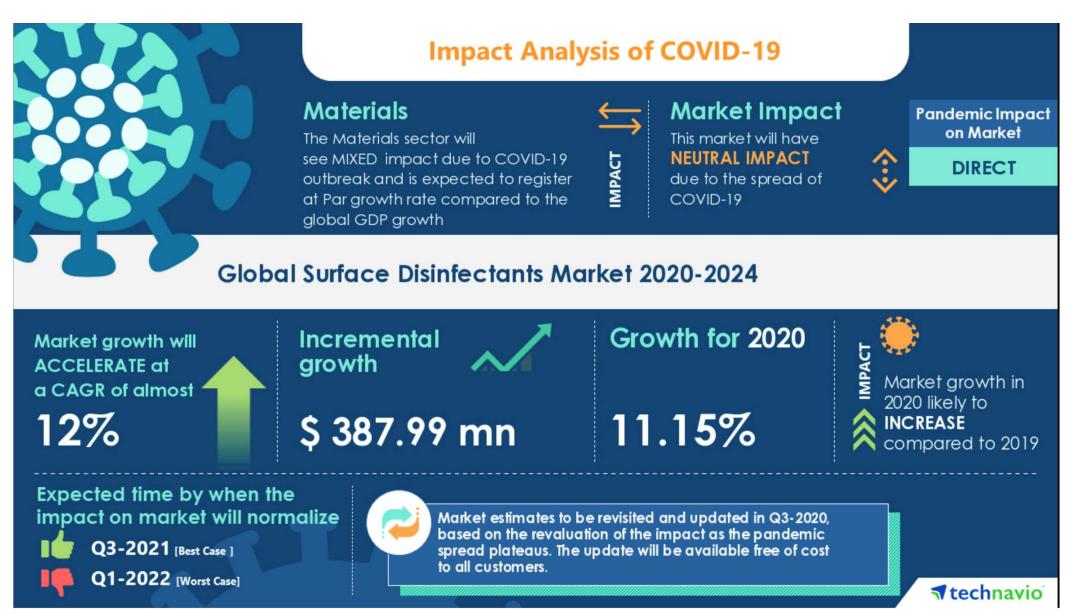

Method	# Studies	Type of pathogen	Microbiological result	Integrity, fit and filtration
Benzalkonium Chloride				
wipes ³⁰	1	Bacteria	Disinfection	Failed
		Viruses and	Disinfection and	
Dry Heat ^{35,38-42,61,74,79,}	9	Bacteria	failure	6 studies: all passed
		Viruses and		
		spore-forming	Disinfection and	
Ethanol ^{35,40,48}	3	bacteria	failure	Failed
			Sterilization and	
Ethylene oxide ^{79,20}	2	Viruses	disinfection	2 studies: all passed
		Viruses,		
		bacteria, spore-		
		forming	Sterilization,	
Gaseous hydrogen		bacteria,	disinfection, 1	
peroxide ^{20,40,42,47,48,49,51,79,80}	11	fungus	failure	9 studies: all passed
		Viruses,		
		bacteria and		
Gaseous hydrogen peroxide		spore-forming		
with peracetic acid ^{74,81}	2	bacteria	Sterilization	1 study: passed
		Bacteria and		
		spore-forming		
Hypochlorite ^{30,35}	2	bacteria	Disinfection	1 study: failed
		Viruses,		
		Bacteria, spore-		
		forming	Sterilization,	
Moist heat ^{39,47,57-59,60,61,79,}	8	bacteria	disinfection, failure	5 studies: passed

Peters, et al. Article in submission.

Results of the systematic review (cont.):

Microwave-generated moist heat ^{23,24, 58-60}	5	Viruses and Bacteria	Disinfection	3 studies: passed, 1 study: mixed results
Non-antimicrobial detergent wipes ³⁰	1	Bacteria	Failure	Failure
Ozone ^{26,62,63}	3	Viruses and Bacteria	Sterilization, disinfection, 1 failure	3 studies: 2 failed elastic band but passed face piece, 1 study: passed
Peracetic acid dry fogging system (PAF) ²⁰	1	Viruses	Sterilization and disinfection	Passed
Steam ^{20,35,66,}	3	Viruses, bacteria and spore-forming bacteria	Sterilization, disinfection, failure	2 studies: passed
UVA ³⁵	1	spore-forming bacteria	Failure	N/A
UVGI29,35,40,42,48,58-60,69,70,72, 74,79,82,83	15	Viruses, bacteria, spore- forming bacteria, fungus	Sterilization, disinfection, failure	7 studies: 1 failure, 1 partial failure, 5 passed
UVGI+ dry heat ^{68,79}	2	Viruses and Bacteria	Disinfection and failure	Passed
UVGI+ medium humidity heat ⁷⁹	1	Viruses	Sterilization, disinfection, failure	Passed


The cost and value of environmental hygiene



Why is it so difficult to figure out?

- Costs of not cleaning can affect numerous budgets within a hospital
- Need to look at both expenditures and averted expenditures (including patient days, opportunity costs, staff time, missed surgical revenue, averted infections)

Technavio, Global Surface Disinfectants Market 2020-2024. Business Wire https://www.businesswire.com/news/home/20200903005148/en/Research-Report-Surface-Disinfectants-Market-2020-2024-Increasing

Cleaning vs. Disinfecting

Both reduce microbial contamination, but there is a difference in the amount of reduction

Cleaning- the process of the physical removal of dust and dirt (which also removes some microbes)

• Ex. with surfactants or scrubbing

Disinfection- process of killing microbes through mechanical or chemical means

• Ex. with heat or alcohol

The real question is, what is the cost of NOT cleaning?

Investing in quality is worth it!

Cleaning a hospital: What makes it different from a school?

ERGENC

Why are hospitals different?

- Difference in vulnerability of population
- Difference in level of contamination from sick patients
- Pathogens in hospitals can differ from those in the community
- Difference in needed level of cleanliness (depending on zones)
- Range of specific environments
- Pathogen transmission patterns, host affinities, microbiological characteristics

Conclusion: Cleaner Hospitals mean safer hospitals!

Healthcare environmental hygiene is a key component to ensuring safety in pandemics

We need to focus on the real dangers and evidence-based best practices

We need to make sure that our interventions are safe and based in science

CONNECT & JOIN !

www.cleanhospitals.com

